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Abstract
Purpose – This study aims to propose an offline exploratory method that consists of two stages: first, the authors focus on completing the
kinematics model of the system by analyzing the Jacobians in the vicinity of the starting point and deducing a virtual input to effectively navigate
the system along the non-holonomic constraint. Second, the authors explore the sensorimotor space in a predetermined pattern and obtain an
approximate mapping from sensor space to chained form that facilitates controllability.
Design/methodology/approach – In this paper, the authors tackle the controller acquisition problem of unknown sensorimotor model in non-
holonomic driftless systems. This feature is interesting to simplify and speed up the process of setting up industrial mobile robots with feedback
controllers.
Findings – The authors validate the approach for the test case of the unicycle by controlling the system with time-state control policy. The authors
present simulated and experimental results that show the effectiveness of the proposed method, and a comparison with the proximal policy
optimization algorithm.
Originality/value – This research indicates clearly that feedback control of non-holonomic systems with uncertain kinematics and unknown sensor
configuration is possible.

Keywords Mapping acquisition, Jacobian, Non-holonomic system, Partially unknown kinematics, Sensorimotor mapping
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1. Introduction

For actual implementation of autonomous navigation of mobile
robots, we face two problems in the real use. First, the mobile
robot structure can be generally under non-holonomic
constraint. Even though there exist mobile mechanisms such as
omni-directional wheels that are free from non-holonomic
constraints, they are complex and often their power efficiency is
low. Among those non-holonomic driftless systems (Borisov
et al., 2016), the unicycle, which has a single non-holonomic
constraint, is a typical example, which is considered in this
research. Second, the structure of the robot system can be
partially unknown. Implementation of mobile robots generally
requires definition and management of sensor measurement
based on global coordinate system, which requires parameters
of sensor configurations. It may cause a preparation cost when
such parameters are unknown. Regarding mobile robot
kinematics, even when we know the structure of the mobile
base, parameters such as wheel radius and wheel base can be

unknown. Thus, learning approach is expected to resolve this
problem by covering both unknown sensor settings and
partially unknown kinematics.
The stabilization problem of non-holonomic systems has

been tackled often. Brockett (1983) suggested that there is no
stabilizing control law in general for these systems. Rifford
(2008) identified two obstructions, one global and one local, to
the existence of stabilizing feedbacks. Discontinuous state
feedback control laws have been proposed such as in Astolfi
(1995), who suggested applying a single coordinate
transformation to the non-holonomic system in chained form.
Amar and Mohamed (2013) designed a controller based on
kinematic polar coordinate transformations. D’Andrea-Novel
et al. (1991) showed that stabilization of three-wheel mobile
robots is possible with static state feedback using Lagrange
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formalisms and differential geometry. However, all these
proposals assume that the robot kinematics, the sensor
configuration and the environment are well known.
On the other hand, depending on the application, different

sensors or image features may be used. For example, if Global
Positioning System or ceiling camera is not available, it is not
easy to obtain (x, y, u ) coordinates in Cartesian space. Even in
such case, it should be possible to navigate a robot to a
destination by specifying desired sensor value as the target. This
approach will widen applicability of mobile robots with less
calibration effort. However, the model of a control law in such
robot must still agree with the configuration of the actuators,
the sensors and the environment at all times, otherwise the
controller will not function correctly.
There have been many proposals to adapt the control law to

the problem setting automatically (Kolmanovsky and
Mcclamroch, 1995). For example, Graefe and Maryniak
(1998) built a map from sensor-control Jacobians for
controlling robot manipulators with calibration-free visual
systems, but their approach did not consider robotic systems
with non-holonomic constraints. Similarly, Navarro-Alarcon
et al. (2019) computed adaptive navigation systems with
unknown sensorimotor models. Kobayashi et al. (2013) used a
method to approximate the Jacobian by gradient descent on
non-overlapping sensor spaces and extrapolate the Jacobian
mapping outside the sensing ranges to estimate an integrated
sensor space. They demonstrated their method in a 2-degree-
of-freedom (DoF)manipulator and in a non-holonomicmobile
robot traveling along an infinite wall. Still, they neutralized the
non-holonomic constraints of the unicycle by discarding the
coordinate that was parallel to the reference wall. Miller (1987)
used a general learning algorithm to learn the relation between
control inputs and sensor outputs in a robot arm. Likewise,
Kobayashi et al. (2019) also proposed estimating the Jacobian
matrix for visual servoing with unknown kinematics and other
system parameters by approximating the relation between
actuators and sensors using a measurement given by mutual
information. In contrast to previous works on stabilization of
non-holonomic systems, these research studies do suggest
solutions to modeling the system, although they are not
sufficiently general enough for considering non-holonomic
constraints.
More recently, reinforcement learning algorithms (Smart

and Kaelbling, 2002) have tackled the problem of
uninterpreted sensors and effectors by achieving controllability
of non-holonomic systems with unknown sensorimotor
mapping. The acquisition of a controller could be made more
sample-efficient by considering the non-holonomicity of the
system, rather than relying on a hand-crafted reward design,
which is often required by reinforcement learning algorithms.
In addition, in the case of a driftless system, sample collection
can be made more efficient and even safer by a lattice-shaped
pattern of exploratorymotion.
In this paper, we address the problem of learning a

sensorimotor mapping for a class of non-holonomic driftless
systems with unknown kinematics and unknown sensor
configuration to combine the applicability of adaptive
controllers and non-holonomic controllers. For this purpose,
we first formulate the problem, then we present the learning
approach, and finally we show simulation and experimental

results of the method applied to the unicycle problem in a
variety of sensor configurations. The main contribution of this
paper is a method to automatically construct such mapping in a
systematic way for a predefined region of expected
controllability.
The remainder of this paper is organized as follows. Problem

definition, notation and essential knowledge are described in
Section 2. Theoretical development of the method is described
in Section 3. Simulation and experimental results are presented
in Section 4 and discussion follows in Section 5.

2. Problem setting

Let u 2 Rm be the control (input) vector and s 2 Rn; n > m be
the sensor (output) vector of a dynamic driftless affine system
with state and output equations

_q ¼ F qð Þu
s ¼ H qð Þ; (1)

where q 2 Rn is the vector of generalized coordinates, q is the
vector of generalized velocities and H: Rn ! Rn is an
isomorphic mapping of class C1. The transformation H is
arbitrary and has no units.
The problem tackled in this paper is to find a control law u =

w(s) that realizes a desired sensor value of s(d) under the
condition of unknown F, H (unknown kinematics and sensor
configuration), with arbitrary q, and with non-holonomic
constraints compatible with Pfaffian form, i.e. A qð Þq ¼ 0
(Choset et al., 2005). In other words, we can observe q but only
through an uncalibrated sensor measurement. The problem is
similar under redundant observations s0 2 Rr; r > n, in which
case we consider s” = H(q) with s00 2 Rn and H” an isomorphic
mapping. We assume that the inputs can be driven
independently and that the sensor signal is differentiable with
respect to the input. The following sections present formal
descriptions of the basic concepts.

2.1 Non-holonomic systems
Holonomic systems are those whose constraints obey the
equation

f q1; . . . ; qn; tð Þ ¼ 0: (2)

When the constraint cannot be expressed in the form of
equation (2), then the system has non-holonomic constraints.
Non-holonomic systems pose more difficulties than holonomic
systems because the Lagrangian equations cannot be applied. A
system with first-derivative non-holonomic constraints may be
expressedwith the equation

f q1; . . . ; qn; q1
:
; . . . ; q2

:
; t

� �
¼ 0: (3)

Many of these systems are characterized by a smaller number of
control inputs than DoFs, like in the case of the unicycle, the
rolling wheel and the rolling sphere problems.

2.1.1 Unicycle
In this paper, we rely on the unicycle for specifying themethods
and results without loss of generality. The unicycle is a non-
holonomic system with n = 3 DoFs and m = 2 control inputs.
The state equation is
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5u; (4)

where x, y and u denote positions and orientation of the
unicycle as depicted in Figure 1. The input vector u = [u1 u2]

T

is normally comprised of linear and rotational velocities, but
in this research, it is not specified which component of u
corresponds to each of them. Here it should be noted that
some variations of the unicycle, i.e. a car-like system with
limited rotation, add an additional non-holonomic
constraint ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 1 y2
p

u � R: (5)

We do not deal with these constraints in this paper.

2.2 Approach
We propose an offline learning algorithm to obtain a mapping
from sensor space to chained form (Jiang and Nijmeijer, 1999)
as follows. First, we deduce a virtual input component u3 by
Jacobian estimation and composed of a sequence of legal inputs
such that the input vector becomes uv = [u1 u2 u3]

T, with the
aim of overcoming the forbidden direction posed by the non-
holonomic constraint at the initial state. Second, we explore
the sensor space following a fixed trajectory considering the
virtual input deduced earlier to obtain a mapping f from
sensor space to chained form z = f (s). Therefore, f is
approximated by data collection rather than from a
mathematical model, which is unknown. This method is
advantageous because it allows skipping procedures of
modeling, calibration and sensor mapping measurement.
Finally, we validate the method by controlling the system
with time-state control policy. There are many approaches to
deal with controllability of systems in chained form (Luo and
Tsiotras, 2000; Murray and Sastry, 1991; Jiang and
Nijmeijer, 1999), but here we use time-state control,
proposed in Sampei (1994) and Sampei et al. (1996) and later
described in more detail with a similar control technique in
Lefeber et al. (2000) and Lefeber et al. (2004), because it is
relatively simple and easy to implement.

3. Estimation of sensorimotor mapping

We define two learning stages. The first stage tackles the
problem of system controllability. In other words, the method

starts by learning the inputs required to explore the sensor
space efficiently. Later, the second stage uses the results of the
first stage to navigate in the sensor space and gather a data set
comprised of sensor samples and the corresponding generalized
coordinates in chained form assuming a well-defined trajectory.
This data set is used to infer a mapping from sensor space to
chained form. In Section 3.3, we describe the method to assess
the accuracy of the approach.

3.1Model learning
In the first stage, the controller learns to navigate efficiently
through the sensor space. For that purpose, the control system
needs to learn how to control the variation of each coordinate of
the sensor signal independently. However, there are only two
inputs but three coordinates in the sensor signal, thus only two
dimensions are immediately controllable from the initial
position. Here we show how to calculate a sequence of motions
to travel along the forbidden direction while minimizing
variations along the rest of the sensor space.

3.1.1 Jacobian.
Let s pð Þ 2 R3 be the unitless sensor observation sampled at
point p, where p is identified by sensor value, and let s pð Þ

#ð Þ denote
the time derivative of the sensor observation when input u(#) is
applied, where # 2 1;2f g, u(1) = [1 0]T and u(2) = [1 0]T.
The sensor-control Jacobian J is defined as a measure of the

variability of the sensor signals with respect to the inputs in
matrix form:

J :¼ @s
@u

�����
n�m

¼

@s
@u1

@s
@u2

@s2
@u1

@s2
@u2

@s3
@u1

@s3
@u2

2
6666664

3
7777775
¼ j1 j2

� �
(6)

At the initial state s(0), the sensor-control Jacobian J(0) = J(s = s(0))
of the system indicates the variation of the sensor signal with
respect to each input u(1) and u(2). The state equation in sensor
space at any point p and input u(#) is

s pð Þ
#ð Þ ¼ g s pð Þð Þu #ð Þ ¼ g1 s pð Þð Þu #ð Þ;1 1g2 s pð Þð Þu #ð Þ;2: (7)

Considering control input u = t1u(1) = [t1 0]T, then
s pð Þ

1ð Þ ¼ g1 s pð Þð Þt1 so
@s pð Þ

1ð Þ
@u

¼ @

@u
g1 s pð Þð Þu1 1 @

@u
g2 s pð Þð Þu2 ¼ g1 s pð Þð Þ @u1

@u1
¼ s pð Þ

t1

� Ds pð Þ

t1Dt
:

(8)

Similarly for u = t2u(2) = [0 t2]
T and substituting for s pð Þ

2ð Þ, we
arrive at

J pð Þ ¼ j pð Þ
1 j pð Þ

2

h i
¼ @s pð Þ

@u1

@s pð Þ

@u2

� 	
� Ds pð Þ

1

t1Dt
Ds pð Þ

2

t2Dt

" #
:

(9)

See Figure 2 for a depiction of equation (9). Hence, the
Jacobian is easily obtained by measuring the change in sensor
values before and after applying a constant input u(#) to the
system, sequentially for every input. After obtaining each

Figure 1 The unicycle is a non-holonomic system with canonical
generalized coordinates (x; y; u ) as shown and non-holonomic
constraint _xsinu � _ycosu ¼ 0
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Jacobian element, the system backtracks its movements to
return to s(i). In the case of the unicycle, there is one
inaccessible dimension, so we need to find a state s(*), whose
Jacobian J(*) contains an element j ★ð Þ

c with c 2 1;2f g such that

det j 0ð Þ
1 j 0ð Þ

2 j ★ð Þ
c

h i
¼ 61; (10)

or at least as close to61 as possible, assuming that all Jacobian
elements are normalized (Figure 3). We explore the vicinity of
s(0) in search for s(*) by applying a control policy such that an
input u s pð Þð Þ ¼ u 1ð Þ or u s pð Þð Þ ¼ u 1ð Þ is driven for a fixed amount
of time Dt s pð Þð Þ. Then the Jacobian J(p) is obtained at the
resulting state s(p), and the system is taken back to the initial
state by applying �u s pð Þð Þ for the same amount of time. The
process is repeated in an exponential search for Dt s ★ð Þð Þ and
u s ★ð Þð Þ that optimizes equation (10):

s ★ð Þ; c
� �

¼ arg max
s pð Þ ;i2f1;2g

jdet j 0ð Þ
1 j 0ð Þ

2 j pð Þ
i

h i
j: (11)

3.1.2 Virtual input.
As shown above, the input u s ★ð Þð Þ applied for Dt s ★ð Þð Þ will reach
state s(*), which is a state where applying input u(c ) will
maximize movement in the direction forbidden by the non-
holonomic constraint at s(0). If u(c ) for Dt is then followed by
input�u s ★ð Þð Þ forDt s ★ð Þð Þ, the resulting state is

s ¼ s 0ð Þ 1 j ★ð Þ
c u cð ÞDt; (12)

that is, the system effectively travels along the forbidden
direction at s(0). Therefore, we have deduced a sequence of
inputs whose end result is equivalent to a virtual input the
direction of the non-holonomic constraint:

u 3ð ÞDt () u ★ð ÞDt ★ð Þ; u cð ÞDt; � u ★ð ÞDt ★ð Þ: (13)

Wewill use inputs u(1), u(2) and virtual input u(3) to navigate the
sensor space freely in the next stage. Conceptually, it is similar
to a holonomic systemwith an additional input.

3.2Mapping of sensor space to chained form
The state of a non-holonomic system depends on the history of
the control inputs as a result of the non-integrable constraints.
Therefore, navigation in the sensor space requires tracking the
input history and applying it to the kinematics of the system to
obtain a consistent state. However, in this problem, we cannot
rely on the kinematics of the system. Here we propose to
circumvent the kinematics problem by returning the state to its
initial position by backtracking the sequence of inputs applied
to reach each sampled state. This method requires that there
are no significant deviations in the trajectory of the systemwhen
backtracking compared to the outward trajectory.

3.2.1 Chained form
Chained form is a canonical formulation that obeys the formula
(shown here for the two-input case)

z ¼ G zð Þu ¼ g1 zð Þu1 1g2u2; (14)

where

g1 zð Þ ¼
1
0
z2

2
4

3
5 and g2 ¼

0
1
0

2
4

3
5: (15)

Now, let f = [f 1 f 2 f 3]
T be the mapping of sensor

coordinates to chained form coordinates, denoted by

z ið Þ ¼ f s ið Þ
� �

; (16)

where i indicates some state. Knowing from the definition of
Jacobian that

s ið Þ ¼ J ið Þu (17)

and deriving equation (16) with respect to time assuming that u
is constant,

zi ¼

df 1 sð Þ
ds

js ið Þs ið Þ

df 2 sð Þ
ds

js ið Þs ið Þ

df 3 sð Þ
ds

js ið Þs ið Þ

2
6666664

3
7777775
u ¼ df sð Þ

ds

�����
s ið Þ
J ið Þu: (18)

From the definition of chained form equation (14), the
following holds:

z ið Þ ¼ G z ið Þ
� �

u ¼ G f s ið Þ
� �
 �

u: (19)

Equating equation (18) to equation (19) and removing u, we
arrive at

G f s ið Þ
� �
 �

¼ df sð Þ
ds

�����
s ið Þ
J ið Þ; (20)

where it can be seen thatG has two terms: the first one df
ds is the

Jacobian of the mapping from sensor space to chained form
with respect to the sensor observations, and the second one J(i)

Figure 2 The Jacobian is obtained from subtracting the sensor
observation at the target state s(i) from the observations after applying
inputs u(1) and u(2) for a small amount of time

Figure 3 The Jacobian element j ★ð Þ
c orthogonal to j 0ð Þ

1 and j 0ð Þ
2 in sensor

coordinates is found by exploration of the sensor space
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is the same Jacobian as in the first stage, although sampled at
different coordinates. Actually, we can sample G directly,
bypassing the need to calculate the two terms separately.

3.2.2 Exploration of sensor space
In this section, we describe themethod used to obtain pairs (s(i),
z(i)) of corresponding coordinates in sensor space and chained
form space. The sensor space sampling procedure involves
controlling the system with a fixed sequence of inputs to reach
each vertex in a grid in virtual space. The coordinates of each
vertex are (c1u(1)Dtc, c2u(2)Dtc, c3u(3)Dtc) where c1, c2, c3 2 Z are
the indexes for the grid coordinates andDtc is a fixed parameter.
The fixed sequence of inputs must abide to the following

rules on account of previously mentioned limitations:
� Every input must be backtracked in reverse order.
� u s ★ð Þð Þ must always be applied in last place to prevent

traversing along the subspace of virtual input u(3)

inadvertently.
� The use of the virtual input u(3) should be minimized to

reduce cumulative position errors.

The algorithm used herein is shown in Algorithm 1. The sensor
samples s(i) are read from the sensor observations while the
virtual states z(i) are calculated internally based on the input
history. At each point of the grid, the virtual coordinate z(i) is
recorded together with the sensor observation s(i) at that point.
The resulting pair is incorporated into the data set for training
the approximatedmapping.

3.2.3 Function approximation.
The last step toward obtaining f consists in processing the data
set obtained earlier by making use of radial basis functions with
Gaussian kernels (Gaussian RBF), but other supervised-
learning techniques such as neural networks should also be
valid.
AGaussian kernel takes the form

w j sð Þ ¼ exp
�s� bj

2

2s2

� 

: (21)

Gaussian RBF is a linear combination of Gaussian kernels
distributed in the target region of the approximation. Each
location is set by bj and denoted a base. Thus, for one output
variable,

f sð Þ ¼
XNB

j¼1

wjw j sð Þ; (22)

where NB is the total number of kernels and
w ¼ w1 � � � wNB

� �> are the unknown linear coefficients, or
weights. In this research, we specified the number of kernels
and the approximation started by distributing the kernels in an
orthogonal grid covering all sensor samples in the data set. The
weights are calculated by least squares as specified in Kondor
(2004). The loss function is

L z; f sð Þð Þ ¼ 1
2
z� f sð Þ2: (23)

TakingN as the number of points in the data set, we define

C s0; s1; . . . ; sN�1ð Þ ¼
w1 s0ð Þ � � � wP s0ð Þ

..

. . .
. ..

.

w1 sN�1ð Þ � � � wP sN�1ð Þ

2
664

3
775
(24)

and the solution with regularization term l is

w ¼ C>C� l Ið Þ�1
C>z;

which replaced in equation (22) gives us, at last, f .

3.3 Assessment
Evaluation of the estimated mapping from sensor space to
chained form space is performed by placing the system at any
point in the sampled region of the sensor space and controlling
it to the origin. Here we apply time-axis control although
alternative controllers may be equally valid. Non-holonomic
systems often have non-linearities that linear controllers cannot
deal with. Overcoming these difficulties is out of the scope of
this research. For simplification, we assume that the starting
rotation of the assessment of the controller is approximately
parallel to the starting rotation of the learning stages.

3.3.1 State space control of time-axis form.
The time-state control strategy involves transforming the state
equation of a non-holonomic system into two independently
controlled state equations (Sampei, 1994): the time control
part and the state control part. The transformation involves a
change in coordinates z a[t n]T 2R3. The state equation of the
time control part

t ¼ h t ; nð Þu1 (26)

consists of a single generalized coordinate t 2 R controlled by
the input component u1. Typically, control of t is constant, i.e.
u1 = 1. The state control part can then be represented by

dn
dt

¼ f0 nð Þ1 f1 nð Þu2: (27)

Equation (27) sees the time variable replaced with t , thereby
equation (26) controls the time scale of equation (27). Control
of t to the origin is achieved by alternating positive and negative
values of u2 until n = 0 and then making t = 0 with u1. The
advantage of time-state control form is that in many cases, the
state control part can be designed as if there were no non-
holonomic constraints in the state equation. Application of
non-linear transformation to q from some non-linear system to
time-state control form with generalized coordinates (t , j )
enables linear feedback control on the system.
The time-state part of a 3-DoF state is

t ¼ dz1
dt

¼ u1 (28)

where we have set h(t ,n) = 1, and its control-state part is

d
dz1

z3
z2

� 

¼ A

z3
z2

� 

1Bu2; (29)

where
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A ¼ 0 1
0 0

� 

and B ¼ 0

1

� 

: (30)

We now show the control law for assessing controllability of the
target system. System (28) is driven by a constant input u1 = 1
and system (29) is controllable by state-space control with one
input u2 = f(z2, z3), which is calculated as follows. The
controllability matrix of equation (29) is (Dominguez et al.,
2006)

Q ¼ B j AB
� � ¼ 0 1

1 0

� 

; (31)

which is controllable as its rank is two. Under feedback
stabilization with parameters K = (k1 k2), the feedback
controlledmatrixAf becomes

Af ¼ A1BK ¼ 0 1
k1 k2

� 

: (32)

Given control poles p1 and p2, the characteristic polynomial is

Pf sð Þ ¼ 1
s� p1ð Þ s� p2ð Þ

� 	�1

¼ s2 � p1 1 p2ð Þs1 p1p2;

(33)

so k1 = p1 1 p2 and k2 = p1 1 p2. Thus, the control input with
poles p1 and p2 is

u2 ¼ k1 k2
� � z3

z2

� 

¼ �p1p2z3 1 p1 1 p2ð Þz2: (34)

Consequently, by controlling u2 with equation (34), we
stabilize the system close to the time-axis indicated by
equation (28).

4. Implementation and results

We tested and validated our approach under simulated
conditions and experimentally on a real robot.

4.1 Simulation
Weused the canonical state equation for the unicycle

q ¼
x
y
u

2
4

3
5 ¼

cosu 0
sinu 0
0 1

2
4

3
5u (35)

s ¼ H qð Þ: (36)

with u1 indicating linear speed and u2 rotational speed. These
two equations are hidden from the learning and control
algorithm: only s may be sampled and only u may be modified
arbitrarily. Here, we show the results for the following three
variations of H, which have been designed so that the mapping
is isomorphic in the region of interest:

H1 qð Þ ¼
x
y
u

2
4

3
5; H2 qð Þ ¼

sinh yð Þ
ex

arctan uð Þ

2
4

3
5;

H3 qð Þ ¼
x1 ey

ex � y
u 3

2
4

3
5: (37)

In all three cases, the parameters of the simulation were set as
follows: the initial state was q0 = [0 0 0]T, 9 samples per axis
with a separation of 0.25 units in the first stage, 5 samples per

axis (total of 53 samples) in the range [–2, 2] for constructing
the data set, approximated by Gaussian RBF with 53 kernels,
standard deviation 1.5 multiplied by the minimum distance
between kernels and regularization term l = 0.5 in the second
stage. The linear controller for assessment had poles (–5, 5),
starting position (x, y, u ) = (–2, 0.5, p /4) and running time of
2.5 s. Standard deviation for the Gaussian kernels for each case
were s1 = 1.1970, s2 = 0.6643 and s3 = 3.0745, respectively.
The trajectory, observations and Gaussian kernel locations in
sensor space of the sensor space mapping stage are shown in
Figures 4 and 5.
In the three sensor configurations, the system was

successfully controlled to the time axis. We did not add a back
and forth control to u1 to control the whole system to the origin
because it was irrelevant for the purposes of this paper. Errors
in the z2-axis of the transformation function f , corresponding
to y in (x, y, u ) space, along the time-axis in chained space were
negligible (f 2(t) = 0610�13 for the three cases). In contrast,
errors in the z3-axis, corresponding to u in (x, y, u ) space, were
significant: f 3(t) = 06 0.0138 forH1, f 3(t) = 06 0.0759 for
H2 and f 3(t) = 06 0.2356 for H3. The inaccuracies in the
approximation of sensor observations to chained space are
perceived as perturbations by the control law, and are
appropriately corrected. Indeed, these inaccuracies resulted in
small deviations of the controlled trajectory as shown in Figure
6. Positional errors derived from inaccuracies in the actuators
were negligible as expected in a simulated environment. In the
case of H1, the sensor mapping is the identity, thus the
trajectory in sensor space matches the trajectory in (x, y, u )
space. The sampled observations are evenly distributed across
the sensor space and the approximation of f is good. With
respect to H2, the Gaussian kernels cannot approximate
accurately all the sampled observations in the region s2 2 (0, 1)
(Figure 5 – H2), which derives in a slight deviation of the
trajectory as shown at the left of Figure 6 – H2. In the case of
H3, the oscillation in the trajectory cannot be explained by the
control poles because they are real values. Rather, the
inaccuracies are better explained by the high concentration of
sampled observations compared to the number of kernels near
the initial state as shown in Figure 5 –H3.

Figure 4 The trajectory of the simulated system during sensor space
sampling (stage 2) in (x; y; u ) coordinates is the same for H1, H2 and H3

Note: Arrows indicate sampled states
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4.2Mobile robot
We tested our approach experimentally on a real robot
(Figure 7). We used the mobile robot model Pioneer 3-DX [1],
which features two feedback-controlled wheels with a high
resolution encoder and a swivel caster for balance. We used a
5K PTZ camera fixed on the ceiling and connected to an image
processing workstation. The camera images were processed
with OpenCV and Armadillo libraries and involved image
segmentation by colors, noise removal and identification of
beacon characteristics. The beacons were installed on the robot

as shown in Figure 8. The sensor outputs were the (x, y) pixel
coordinates of the centroid of one beacon and the angle
between the line connecting both beacons and y = 0. The
CORBA [2] implementation by omniORB [3] was used to
connect all off-board and on-board components. Inputs to the
robot were linear and rotational speed, as in the simulation.
The parameters of the sampling controllers were similar to the
simulation but with reduced number of samples: six samples
per axis with a separation of 0.3 units in the first stage, four
samples per axis (total of 43 samples) separated by 0.667 units
for constructing the data set, approximated by Gaussian RBF
with 43 kernels, standard deviation of 0.45 and regularization

Figure 5 Dotted line: trajectory of the simulated system during sensor
space sampling (stage 2) in sensor coordinates for H1 (top), H2 (middle)
and H3 (bottom). Solid line: trajectory of the robot along the line taken
as time axis

Notes: Arrows: sampled observations with their

rotations indicating units of s
3
 in radians. Crosses:

location of Gaussian kernel centers

Figure 6 Trajectory of the simulated system after learning of
sensorimotor mapping for the three sensor configuration transformation
functions H1, H2 and H3

Note: The dotted line indicates the time

axis τ = z1

Figure 7 The Pioneer 3-DX robot
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term l = 0.5 in the second stage. The linear controller for
assessment had poles (�5,�5).
The mobile robot was successfully controlled after

exploration (Figure 9) of the sensor space. The output of the
first stage was u(*) = u(2) Dt(*) = 1.5 s. Figure 10 shows four
trajectories starting at different points in the left and bottom
sides of the figure converging toward the approximate position
of the time axis. As in the simulations, we did not add a back
and forth control to the linear velocity input. The imperfections
in the sample observations in the second stage may be
attributed to perspective deformation, lens aberrations, signal
noise, image processing lag, partial occlusion of beacons and
cumulative positional errors.

4.3 Comparison to proximal policy optimization
We compared the proposed approach to proximal policy
optimization (PPO), which is a class of reinforcement learning
algorithm (Schulman et al., 2017), in a problem setting similar
to the proposed one. The desired sensor value s(d) = H([0 0
0]T) was implicitly defined in the reward function

R :¼ 100

s� s dð Þ : (38)

The unknown output equation was the same as in the first
simulated environment H(q) = H1(q) = q, discount factor g =
0.997, sample time Ts = 0.1 s and initial state for each training
episode (x0, y0, u 0) = (–2, 0.5, p /4)1 r/10 where r is a vector of
standard normal distributed random values. The linear speed
control input of the simulated system was fixed at 1, while
rotation speed control input was controlled by the PPO
algorithm. This way, the control inputs used in the assessment

of the proposed method, which relies in time-axis control, and
in the PPO controller matchedmore closely.
After 138 episodes, training was stopped with an average

reward of 5,358 units over the past 5 agents (Figure 11) and a
total number of sensor observations of 2,926. The agents from
episode 134 to episode 138 were selected to control a unicycle
from (x0, y0, u 0) = (�2, 0.5, p /4). Figure 12 shows the
trajectory of the agent at step 136. The average closest distance
to the origin by the last five PPO agents was mPPO=�0.0783m
(against mH1

¼ �0:0114 m in our method) units with standard
deviation sPPO = 0.0878 . Compared to the proposed method,
PPO required more samples to arrive at a controller (2,926
against 53 = 125 in the proposed method), and yet PPO was
only trained for controlling the system from (x0, y0, u 0) = (�2,

Figure 8 The experimental setup as seen by the camera and image
processing output

Figure 9 Sampled points in camera coordinates for the data set

Notes: Note that the camera y-axis is inverted.

The angle of the arrows indicates the value of

s
3
 in radians. The empty-filled arrow

indicates coordinates of the initial position for

stages 1 and 2. The crosses indicate the

location of Gaussian kernel centerst

Figure 10 The feedback-controlled trajectories in sensor space starting
from four different points show convergence at the time-axis
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0.5, p /4). Moreover, PPO required that the system was
repositioned on the starting state at the beginning of each
episode, while the proposed method only requires to be placed
at the desired state once and is controllable in all of the region of
sensor exploration. The proposed method was shown to be
safer and efficient in the sense that it can avoid unexpected
exploration in the process of sample collection.

5. Conclusion

In this paper, we have proposed a method to learn the
sensorimotor mapping of an unknown non-holonomic driftless
system and unknown sensor configuration with the purpose of
system controllability in a predefined target region. The
proposed method consists of two stages. First, we explored the
vicinity of the system at the initial state to maximize
maneuverability of the system with respect to the sensor signal.
Second, we explored the sensor space to construct a mapping
from sensor space to chained form. We carried out some
simulations and real experiments to show that the trained
controller is capable of controlling the system after exploration
of the sensor space, therefore validating the method. The results
show that the accuracy of the approximation of the mapping
from sensor space to chained form and the repeatability of the
movements of the robot play a significant role in the
performance of the method. Finally, the results were compared
against the PPO algorithm, showing that the proposed method
requires fewer observations and is safer to deploy in the target
environment.
The most important limitations that we have identified are, first,

that the controllability region is bounded to the sampled region of
the sensor space, although this limitation is not specific to our

method but to function approximation by radial basis functions in
general. Second, that learning is performed offline becausewe could
not rely on assumptions that would have enabled online learning
because of the generality of the problem requirements (i.e. we do
not know the kinematics of the system). Third, the sensor space
sampling stage is affected by the curse of dimensionality; hence, this
method is not suitable to systems whose state space has a high
number of dimensions.
We expect to make further improvements in the future by

dropping some of the assumptions. Specifically, this method
does not support non-holonomic systems with j 0ð Þ

1 not
orthogonal to j 0ð Þ

2 , such as the unicycle system with
independently controlled wheels. To overcome this problem, an
additional stage prior to Jacobian learning should search for the
combination of inputs that maximizes the orthogonality
between j 0ð Þ

1 and j 0ð Þ
2 . Furthermore, it seems reasonable to

remove backtracking by controlling the system to the origin
using linear control but it is not clear yet under which conditions
it is possible. More research is needed in these areas to increase
the scope of applicability.

Notes

1 https://cyberbotics.com/doc/guide/pioneer-3dx

2 https://www.corba.org

3 http://omniorb.sourceforge.net
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Algorithms

Algorithm 1 Pseudo code for sampling the sensor space. u(c )

and u s ★ð Þð Þ are the corresponding inputs obtained in Section 3.1.
loop Dt1:0. . .DT1

apply input u(3) for Dt1;
loopDt2:0. . .DT2

apply input u(c) for Dt2;
loopDt3:0. . .DT3

apply input u s ★ð Þð Þ for Dt3;
dataset! dataset| s; u 3ð Þ;u cð Þ;u s ★ð Þð Þð Þð Þ
backtracku s ★ð Þð Þ;

backtrack u(c);
backtrack u(3);
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